Your Roll No.....

Sr. No. of Question Paper: 1564

A

Unique Paper Code

42351201

Name of the Paper

Calculus and Geometry,

CBCS (LOCF)

Name of the Course

B.Sc. (Programme)

Mathematical Sciences /

Physical Sciences

Semester

0

II

Duration: 3 Hours

Maximum Marks: 75

Instructions for Candidates

- 1. Write your Roll No. of the top immediately on receipt of this question poper.
- 2. This question paper has six questions in all.
- 3. Attempt any two parts from each question.
- 4. All questions are compulsory.
- 5. Marks are indicated.
- 1. (a) Sketch the graph of the function $f(x) = x^4 + 2x^3$.

 (6.5)

P.T.O.

1564

(b) Sketch a graph of a function f with all the following properties:

The graph has y = 1 and x = 3 as asymptotes; f is increasing for x < 3 and 3 < x < 5 and is decreasing elsewhere; the graph is concave up for x < 3 and for x > 7 and concave down for 3 < x < 7; f(0) = 4 = f(5) and f(7) = 2. (6.5)

- (c) Identify the symmetries of the curve $r = 1 + 2\cos\theta$ and then sketch the curve. (6.5)
- (d) Let x = 4tan 2t, y = 3sec 2t where 0 ≤ t ≤ π. Find an explicit relation between x and y. Also, sketch the path described by the given parametric equations over the prescribed interval. (6.5)
- 2. (a) Evaluate the following limits using L'Hospital's Rule

$$\lim_{x \to \pi/2} (\tan x)^{(\pi/2)-x}$$
 and $\lim_{x \to 0^+} [\tan x \log x]$. (6)

- (b) Sketch the graph of $y = (x 4)^{2/3}$. (6)
- (c) Use cylindrical shells to find the volume of the solid that is generated when the region R in the first quadrant enclosed between y = x and y = x² is revolved about the line x = 0. (6)

- (d) Find the volume of the solid formed when the region between the graphs of $y = 1 + 2x^2$ and $y = 3 2x^2$ is revolved about the x-axis. (6)
- 3. (a) Find the volume of the solid generated when the region enclosed by x = 0, y = 0, x = 1 and $y = x^2 + 1$ is revolved about the y-axis. (6.5)
 - (b) Find the length of the curve $y = 2x^2 + 1$ over the interval [1,3]. (6.5)
 - (c) Find the area of the surface swept out by revolving

$$y = \sqrt{9 - x^2}$$
 about the x-axis. (6.5)

(d) Find the arc length of the curve $x = t^3$, $y = 3\frac{t^2}{2}$,

$$0 \le t \le \sqrt{3} \ . \tag{6.5}$$

4. (a) Derive the reduction formula

$$\int \sin^{n} x \, dx = -\frac{1}{n} \sin^{n-1} x \, \cos x + \frac{n-1}{n} \int \sin^{n-2} x \, dx$$

and evaluate the integral
$$\int_0^{\pi/2} \sin^5 x \, dx$$
. (6)

(b) Prove that for nonnegative integers m and n, $\int_{0}^{2\pi} \cos mx \cos nx \, dx = 0.$

(c) Obtain reduction formula

 $\int \tan^{n} x \, dx = \frac{\tan^{n-1} x}{n-1} - \int \tan^{n-2} x \, dx, \quad n > 2$ and hence using that evaluate the integral $\int \tan^{4} x \, dx.$ (6)

(6)

(d) Evaluate $\int_0^{\pi/2} \sin^2 \frac{x}{2} \cos^3 \frac{x}{2} dx$ after obtaining the reduction formula for the integral

$$\int \sin^m x \cos^n x \, dx \,. \tag{6}$$

5. (a) Describe the graph of the equation

$$y = 4x^2 + 8x + 5. (6.5)$$

(b) Find equation for the hyperbola that has vertices (0, ±2) and asymptotes

$$y = \pm \frac{2}{3}x$$
. (6.5)

Download all NOTES and PAPERS at StudentSuvi

(c) Sketch the graph of ellipse and label the foci, vertices and ends of the minor axis

$$(x + 3)^2 + 4(y - 5)^2 = 16.$$
 (6.5)

- (d) Rotate the axes of coordinates to get rid of the xy-term from the equation, name the conic $x^2 + 4xy 2y^2 6 = 0$ and sketch its graph.
- 6. (a) Show that the graphs of given $r_1(t)$ and $r_2(t)$ intersect at the point P(1, 1, 3). Find the acute angle between the tangent lines to the graphs of $r_1(t)$ and $r_2(t)$ at this point, where

$$r_{1}(t) = t^{2}\hat{i} + t\hat{j} + t^{2}\hat{k}$$

$$r_{2}(t) = (t-1)\hat{i} + \frac{1}{4}t^{2}\hat{j} + (5-t)\hat{k}.$$
(6)

(b) Sketch the graph and show direction of increasing t for

$$r(t) = 9 \cos t \hat{i} + 4 \sin t \hat{j} + t \hat{k}. \qquad (6)$$

(c) Evaluate
$$\nabla \times (\nabla U \times \nabla V)$$
 where $U = x^2yz$, $V = xy - 3z^2$. (6)

1564

(d) Show that divergence of the field

$$F(x, y, z) = \frac{c}{(x^2 + y^2 + z^2)^{3/2}} (x\hat{i} + y\hat{j} + z\hat{k}) \text{ is zero.}$$

(6)

townloaded from 15 United No.

(100)